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S U M M A R Y  
A geometric programming method, recently developed for the constrained maximization ofposynomials, is presented 
and illustrated by an application to the optimal design of a torsion bar spring. 

1. Introduction 

Engineering design problems often involve functions of the form 
T N 

y(x) = e, H (1) 
t = l  n = l  

where the coefficients ct are positive constants, the exponents ~t. are arbitrary real constants, 
and the design parameters x. are positive variables, grouped in the vector 

x = (x 1 . . . .  , xN). (2) 

Functions of type (1) are called posynomials, an abbreviation of positive polynomials. 
Geometric programming, abbreviated below by GP, is the mathematical theory developed 

by Duffin, Peterson and Zener, [1], for the constrained minimization of posynomials, i.e. for 
solving problems of the type : 

Problem 1: Minimize Yo (x) 

s.t. (subject to) 

x, > 0 (n = 1 . . . . .  N) (3) 

y,,(x)<= 1 (m = 1, ..., M) (4) 

where the functions ym(X) are posynomials : 
Tm N 

ym(X) = E Cmt H x:mtn (m = O, 1 . . . . .  M).  (5) 
t = l  n = l  

Problem 1, called the primal problem of GP, is treated in GP via the following related problem, 
called the dual problem of GP. 

Problem 2: Maximize the function 
Tm / ^ \~mt M 

v(6) = H ( Cm, I~ 2~ ~ (6) 
rn=Ot=l \~mt /  m = l  
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where 

6 = ( 5 0 1  , 5 0 2  . . . .  ' 5 0 T o '  5 1 1  . . . .  ' 5 1 T 1  . . . .  ' (~MTM) 

Tm 

Am= ~ 6,m ( m = l  . . . . .  M) 
t = l  

s.t. 

and 

&,  > 0 

To 

5or = 1 
t = l  

(m=O . . . . .  M;  t = 1, ..., T~) 

(7) 

(8) 

(9) 

(10) 

M Tm 

Z Y ~ , . , . r  { . : 1  . . . . .  N) {11) 
m = 0  t = l  

The correspondence between the primal and the dual problems is such that the term 
N 

c,., 1-[ x~ =~  (t = 1 . . . .  , T.,), 

of the posynomial y,,(x), (m = 0, 1 . . . . .  M) corresponds to the dual variable 5m,. 
The duality theory of GP, [1], gives the useful relations which, under suitable conditions, 

exist between the primal and the dual problems. In particular, if x* = (x* . . . .  , x*) is an optimal 
solution of problem 1, then the vector (7) given by 

5ttU 

N 

C0t H ( x"*)~~ 
t t = l  

y0(x*) 

N 

&~,.,  1-I {~:) . . . .  
n = l  

m = 0 ;  t = l  . . . .  ,To 

m =  1, . . . ,M;  t = l  . . . . .  Tm 

(12) 

is an optimal solution of the problem 2. It follows from (12), by using (5), (4) and (8), that 

5mt :O  ( t =  1 . . . .  , Tin) 

for any m= 1 . . . . .  M s.t. y,,(x*) < 1. 
Conversely, if a vector 5"=(5"  1 . . . .  ,5~trM) is an optimal solution of problem 2, then each 

optimal solution x* of problem 1 satisfies 

~5*tv(5*) m = 0 ;  t = l  . . . .  , T  O 
N 

Cmt H X~ mtn : 
n = l  

(13) 

5 "  t 
Zg for m = l ,  M s.t. 2 " > 0  
Am "" "'  

t = 1  . . . . .  T~ .  

In either case the optimal values of the primal and dual problems are equal: 

yo(X*)- min yo(x) = max v(0)= v(6*) (14) 
s.t. (3), (4) s.t, (9). (10) ,  (1 1) 

In GP  one solves first the dual problem 2 which is easier to solve since its constraints {(9), 
(10) and (11)} are linear. An optimal solution 6" of the dual problem yields important information 
about the primal problem 1 even without solving it. 

First, the optimal value min yo(x) of the primal problem is, by (14), equal to v(6*). 
s.t. (3), (4) 
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N 
Second, the terms %, 1-I x, . . . .  , (t = 1, ..., Tm) , of the posynomials ym(X), (m = O, 1 . . . . .  m), 

n = l  

are given by (13), and thus it is possible to evaluate the relative importance of these terms 
without actually solving the primal problem. 
Finally, an optimal solution x of the primal problem can be found by solving (13), which 
is a system of linear equations in the logarithms of x,, (n -- 1 .....  N). 

These features of GP make it one of the most effective optimization methods presently 
available to the designer. Some references on applications of GP in engineering design prob- 
lems are [1] chapter 5, [-2] chapter 4, and [3] through [10]. 

The scope of applications of GP was greatly widened by the recent developments in [11] 
through [16]. These include extensions and adaptations of GP to optimization problems 
involving general polynomials rather than posynomials, and general inequalities rather than 
the one sided constraints (4). 

The recent adaptation of GP to the constrained maximization of posynomials, given by 
the authors in [-16], is the subject of this paper. The method is described in section 2, and applied 
in section 3 to the optimal design of a torsion bar spring ([17], chapter 11) where the energy 
absorption capability per cycle of repeated loading is maximized, subject to given constraints 
on the design parameters. Section 4 is a short discussion of the method. 

2. The Constrained Maximization of Posynomials 

This section gives a heuristic development of some results proved in [15]. We start with the 
simplest posynomial maximization problem: 

Problem 3" Maximize the posynomial 

T N 

y(x) = Z e, I ]  x:t- (1) 
t = l  n = l  

s.t .  

x, > o (,  = 1,...,  N) (3) 

This problem is equivalent to (in the sense that it shares solutions with) the problem of 
minimizing the reciprocal of y(x). 

Problem 4: Minimize 1/y(x) s.t. (3). 

If the posynomial y(x) has a single term, i.e. T =  1, then its reciprocal 1/y(x) is also a posy- 
nomial and problem 4 is an ordinary unconstrained primal problem of GP. 

In the general case we follow the development in [18] and consider an optimal solution x* 
of problem 3 and the corresponding maximal value y*-y(x*).  

The partial derivatives of 1/y at x* satisfy for k = 1 ..... N 

# _ 1 E %ct (x*) "~" , by (1) (15) 

= 0, since x* minimizes 1/y. 

Let the "weights" 6* be defined by 

N 

_- (t = 1, . . . ,  T )  (16) 

These clearly satisfy 
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~, __> 0 (t = 1 . . . . .  T) 
T 

2 fi,= 1, by (1), 
t = l  

and by combining (16) and (15) 
T 

E e,k (it----- 0 (k = 1 . . . . .  N) .  
t = l  

The minimal 1/y* satisfies 

1 T 
y--g = I-I (y.)-0r, by (18), 

t = l  
t 

T 

- Z  ~,. (i,* 
t = l  

(17) 

(18) 

(19) 

1--[ c(~.t. ) - ~  N = I-I (x*) by (16) 
t = l  n = l  

,=1 ~ , by (19). (20) 

Consider now any variables (it, ( t= 1, ..., T), satisfying (17) and (18). The geometric in- 
equality, e.g. [1], implies that for x, > 0  (n = 1 . . . . .  N) 

T 

,=1~6-~t) ,=ll-I x, t=l (21) 

with equality if and only if 
N 

ct (22) (i,= y-(~ II  x:'-..~1 

If the weights (i t satisfy (19) in addition to (17) and (18), then the exponents of x, in (21) 
vanish and (21) is rewritten as 

1 < ~ ( c ~ ) - e t f o r a n y x . > 0 , - -  ( n = l  . . . .  ,N) .  (23) 

Combining (23) and (20) it follows from the minimality of 1/y* t h a t  

l [ "  " r / c t \ - 0 ~  1 <~ 1 
t = l  \ 5t ~] y* y(x) for any Xn > O, (n = 1,..., N),  

--< FI {cry-at for any (it ( t=  1, T) (24) t=l \ ~J  .... 

satisfying (17), (18) and (19). 
Therefore, the vector (i* = ((i*, ..., (i*) defined by (16) is a solution of the following minimiza- 

tion problem: 
Problem 5 : Minimize the function 

s.t. (17), (18) and (19). 

Problems 4 and 5 are called the primal and dual problems respectively. Both are minimization 
problems, a situation different from the duality in GP where the primal problem 1 is a minimi- 
* The continuity of (25) for (5 t >0 (t= 1 ..... T) requires that (c,/St)-~ 1 if 5t=0. 
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zation problem and the dual problem 2 is a maximization problem. The duality relations 
between the problems 4 and 5 were shown above to include: 

(i) The optimal values of the two problems are equal: 

min t _ min I ]  //c''~-a~ (26) 
s.t.(3) y ( x )  s.t. (17), (18), (19) '=1 t a t )  

(ii) If x* = (s t, ..., x~) is an optimal solution of problem 4 then 5" = (8*, ..., a*r) defined by 
(16) is an optimal solution of problem 5. 

(iii) Conversely, ira* is an optimal solution of problem 5 then, by (22), each optimal solution 
x* of problem 4 must satisfy. 

. . ,  , : ,  t a t )  , 

Since the positivity constraint (3) is part of the definition of a posynomial, problem 3 can be 
described as unconstrained maximization of a posynomial. If the constraints (4) are imposed 
on problem 3 it becomes the following: 

Problem 6: Maximize Yo (x) 

s. t .  

x,, > 0  

y~(x) __< 1 

where 
T., 

ym(X) = E 
t = l  

(n = 1 . . . . .  N)  (3) 

(m = 1 . . . . .  M)  (4) 

N 

c~, lq x:=- (m = o, 1,..., M) (S) 
t l= l  

Taking the reciprocal of Yo (x) results in the equivalent minimization problem: 

Problem 7: Minimize 1/yo(X) s.t. (3) and (4). 
For any set of nonnegative variables act (t = 1 . . . . .  To) satisfying (10), it follows as in (21) that 

To 

1 < t~=l I-I Xn t = l  , f o r  a n y  x (28) 
y o ( x )  = : t, a o , )  . : ,  

satisfying (3). 
For any such a0,, (t = 1, ..., To), we consider the problem of minimizing the right side of (28) 

s.t. (3), (4) and (5). This problem is called below problem 8 (50), to denote the fact that the vector 

5o = (8o, . . . . .  aoro) (29) 

is a parameter in the definition of the problem. 

Problem 8 (50)" Minimize the function 

To 
ro N - ~ %,.60, 
H cot -6~ Xn t = l  (30) 

s.t. (3) and (4), 

where 60 = (801,..., a0ro) are fixed but arbitrary nonnegative scalars satisfying (10). 
The solution of problem 8 (60) for each 5o gives, by (28), an upper bound on the minimal 

value of 1/y o (x) sought in problem 7. 
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Since (30) is a posynomial (with single term, coefficient 1~' %' -ao~ and exponents 
t = l  

To 
eo,,8o,), problem 8 (go) is a primal GP problem, i.e. a special case of problem 1. The dual 

t = l  

problem of 8 (6o) is read from problem 2 to be: 

Problem 9 (g0): Maximize the function 

To C~tOt ) t aot ~I TtH__ ~ (~tmt U{go, g ) -  I1  mt#: 
t = l  m = l  = 

where 

g ---~ (811, g12 . . . . .  81T1, 821 . . . . .  8MTm*) 

s.t. 

8m, > 0  

and 

(31) 

(32) 

( m = l  . . . .  , M ;  t = l  . . . .  ,Tin) (33) 

To M Tm 

- 2  C{ot,8ot+ Z Z %,,8m~=0 (n= 1 . . . .  ,N) .  (34) 
t = l  m = l  t = l  

Up to this point the parameters go were arbitrary, but from (28) and problem 7 it is obvious 
that go = (8ol . . . . .  8Oro) must be chosen to minimize the constrained minimum value of (30) 
which, by the duality theory of (GP), equals the constrained maximum value of (31). 

We express this observation in the following: 

Problem 10: Minimize the maximum value of u(go, g) in problem 9 (60) s.t. 

8or > 0 (t = 1 . . . . .  To) (35) 
and 

To 
Z 6o,-- 1 (10) 

t = l  

Problem 10 is called the dual problem, corresponding to the primal problem 7. The duality 
relations between problems 7 and 10, are derived from the duality relations between problems 
1 and 2 and between problems 4 and 5. Under suitable conditions, these relations include: 

(i) The optimal values of problems 7 and 10 are equal 

1 
min - rain [ max U(go, g)} (36) 

s . t . r  Y O ( X )  go 
s.t. ( 3 5 ) , ( 1 0 )  s.t. (33),  (34) 

(ii) If (6~, g*) is a minimaximizing solution of problem 10, then each optimal solution x* 
of problem 7 must satisfy 

f a*, 

I u(a , g*) Cmt X~ m~n "~- 
. = 1 8 * ,  

T~ ;% 

m = 0 ;  t = l  . . . .  ,To 

for m=l , . . . ,M s.t. 2*>0 ;  t = l  . . . . .  Tm 
(37) 

These relations suggest the following method of solving problem 7; which consists of the 
following two steps: 

Step 1: Solve problem 10, i.e. find a point (6", 6*) minimaximizing u(g0, 6) s.t. (33), (34), (35) 
and (10). 

Important information about the optimal solutions of problem 7 is now available without 
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further work. First, the minimal value of 1/yo (x) in problem 7 is, by (36), equal to u (6*, 6*). 
Second, the terms 

N 

c,~, IF[ x~ ~t- , (t = 1 ... . .  T,,), 
n = l  

of the posynomials ym(x), (m=0, 1, ..., M), are given by (37). 
Step 2" An optimal solution x* of problem 7 is obtained by solving (37), which is a system 

of linear equations in the logarithms of x, (n = 1 ... . .  N). 

3. An Application to the Optimal Design of a Torsion Bar Spring 

The above method is illustrated here by applying it to the optimal design of a torsion bar spring, 
a problem discussed and solved by R. C. Johnson in [17], chapter 11, using a conventional 
method. 

y~ # drno• ~ i , 

' X'-A Support i [ 
bearing ~___ b [ 

'~ L ~] 

Lmax 

,[ 
~ Load arm 

~ M t : Fr 

/ r  

Fig. 1. Torsion bar spring showing practical connection regions and load arm. (Sled-runner type of keyways at both 
ends.) 

Time 

Fig. 2. General variation of force F in figure l, as introduced in shock loading of torsion bar spring. 

The problem is to determine the material (to be chosen from a given list of materials) and 
9eometry of the torsion bar spring shown in Figure 1, that will maximize the energy absorption 
capability per cycle of repeated loading. 

The notation and assumptions of [17] chapter 11, are adopted here. In particular, the fol- 
lowing assumptions are made: 

(i) Energy is introduced to the torsion bar spring by a periodic force F (as in Figure 2), 
applied to the end of the load arm (see Figure 1). The value of Fma~ is dependent upon the 
design. 

(ii) In calculating the energy storage capability of the torsion bar spring, the following can 
be neglected : 
(a) the energy absorbed in the support bearing at B (see Figure 1) 
(b) the energy absorbed in the load arm 
(c) the energy absorbed in the torsion bar because of beam shear deflections. 
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(iii) The diameter d and length L of the torsion bar spring, are bounded from above by 
dma x and Lma x respectively. 

(iv) The stress increase factors, (KI)A and (Ki)c, in the bar at sections A and C respectively 
(see Figure 1) have the common value 1.8. 

Solution: Using the analysis of Johnson [17] pp. 366-372, this problem is formulated as the 
following maximization problem: 

Problem 11 : Maximize P.E. = (P.E.)t + (P.E.)b where 

P.E. = the total energy stored in the torsion bar spring at any instant 

(P.E.)t -- the energy because of twisting 

32(l + #)F2r2 L 

nEd 4 

(P.E.)b---- the energy because of bending 

32F 2 b 2 L 

3nEd 4 

E = the modulus of elasticity 

# = Poisson's ratio 

and the other symbols are defined in Figure 1. 
The constraints are: 

(1.8) 16Fr < S e 
7zd 3 = (1 +p)N 

( 16Fb~ 2 (16Fr~27~ Se 
\ - n i l - /  + \ r id  a / 3  < ( l + p ) N  

and 

d _< dma x 

L <  Lma x 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
(44) 

(45) d > 0 ,  L > 0 ,  r > 0 ,  b > 0  and F > 0 .  

Here 

S e = the published fatigue strength from a standard bending type of fatigue test for the desired 
number of cycles of life 

p = the ratio Se/St, where St is the published yield strength of the material from a standard 
tensile test, and 

N = a safety factor, e.g. the discussion in [17] chapter 6. 

Obvious transformations (e.g. dividing both sides of (41) by the right side, squaring both 
sides of (42) and then dividing by the right side etc.) show that problem 11 is of the type called 
problem 6 above. The corresponding problem of type 8 (g0) is now written as : 

Problem 12 (60): Minimize the posynomial 

s.t. 

Ed 4 F-2 L-16~oO1~ (3~o2)ao~ (1 + #)aoi r -  2~oi b -  2~o~ 
32 

Yi= �9 ~ k T ~  / j F r d - 3  <= 1 

(46) 

(47) 
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162N l + p  2 F2b2d 6 

Y3 -= d =< 1 (49) 

- c =<_ i (50) 

and (45). 
The parameters 6o = (6ol, 602) satisfy 

6o,> 0 t =  1, 2 (51) 
6ol + 602 = 1, (52) 

but are otherwise arbitrary. 
For any fixed 6o, the dual problem of problem 12 (6o) is found from problem 9 (~o) to be: 

Problem 13 (6o): Maximize 

U,,o, 6, = I32E6~O,(36oz),o~(1 +/~),o ] ((1.8)16N (l+p)'~" S~ J x 

(162N 2 ( l + p ) 2 )  '2'+~= ( 1  "~ a~' 

where t~=(6a, 621, 622, '3, 64-) 

and 

1 ~,22 1 \ ' 4  \ 
\amax\l"maxJ'-7--)3 [-g - } ( ' 2 1 + 6 2 2 )  621+'22 (53) 

s.t. 

- - 2 +  q- 6 1 + 2 6 2 1 + 2 ' 2 2  -----0 (exponent ofF) (54) 
-26ol + 61 +2'22 = 0 (exponent of r) (55) 

--2602 + 2 ' 2 1  = 0 (exponent of b) (56) 
- 1 + 64 = 0 (exponent of L) (57) 

4 -361-6621-6622+63 = 0 (exponent of d) (58) 

6 1 ~ 0  , 621 ~ 0 ,  6 2 2 ~ 0  , 6 3 ~ 0  , 64 ~_~0 . (59) 
From equations (54) through (58) it follows that 

61 = 2(6ot-,2z),  '21=6o2, 63=2  and 6 4 = 1 .  (60) 

Substituting (60) in (53) and simplifying we get the following problem which is equivalent to 
problem 13 (60). 

Problem 14 (~o): Maximize 

3,02 ( 1 ~'22 (,02 .~_ 622),o2 +,22 (61) 
W ( a o , , 2 2 )  = \ a . 8  a 2/ 

s.t. 

622 ~ '01 (62) 

622 ]> 0 (63) 
where 

W = (  nE "~ 162N2 l1 +p~2 
32d2~a~Lmax ] ~  \ - -S7 ] . (64) 
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This is dearly equivalent to the problem of maximizing log w(6 o, 622 ) s.t. (62), (63)--whose 
Lagrangian function is 

L(6o, 622, u l )=  log w(8 o, 622)-~-u1(6O1-622 ) . (65) 

An application of the Kuhn-Tucker theorem, e.g. [ 1], gives the following necessary conditions 
(66)-(70) for 622 to be a solution of the problem 14 (60) with fixed 6o. 

0 1 
0622 L(60, 622, ut) = w(60 ' 622) [--(log 1.82622+1)+10g(6o2+622)+1]-ul < 0 (66) 

"0 { 1 
622 8~22 L(6o, 622 , Ul) = W(60 ~ 622) [--(log 1.82622 + 1) 

+1og(6o2q-622)+ 1]--~/1 1 622 =0 (67) 

0 
L(6o, 622,/31) = 6Ol-622 ~ 0 (68) 0ul 

and 

0 
u, ~ L(60, 622, b/l)= (601--622)Ul = 0 UUl 

(69) 

622 ~ 0 ,  U 1 ~> 0 .  (70) 

Let ul =0 in (69) and (0/3622) L(6o, 622, u~)=0 in (66). These give then the following equation 

- l og  1.82622+10g(602+622)= 0 (71) 

yielding 

6~ (72) 
6*2 -- 1.8 2 - 1  

which is easily shown to be the optimal solution of problem 14(6o). Substituting 6" z from 
(72) in (61), we get 

/1 82 1 \6~ / 1 826 N~J-'82602/(1''82-1) 
W(60 ' 6,2)= W680011(1.82(1 +#))6oiaao ' /~.o - - .~  [ . . . .  02 I (73) 

\1.826oe] \1.82-- 1} 

Problem 10 is the dual of the maximization problem 6. From it we write the dual of the maximi- 
zation problem 11 as follows: 

Problem 15" Minimize w (60, 6*2) of (73)s.t. (51)and (52). A similar application of the Kuhn- 
Tucker theorem gives the optimal solution of problem 15 as : 

3 (1 + #)(1.82-1) (74) 
6,1 = 3+(1+/~)(1.82_1), 6*2 = 3+(1+/~)(1.82_1) 

These optimal values of 6"1 and 6* 2 give, by (37), the relative contributions of the energy 
stored because of twisting and the energy stored because of bending, respectively, to the maximal 
total energy stored in the torsion bar spring, which by (36), is given by {w(6"1, 6*2, 6*2)}- 

The optimal material is now determined by calculating 6~1, 6*2, 6*2 and W(6oa, 6o2, 6*2) 
for each material in the given list, and choosing the material with lowest value of W(6o~ , 6o2, 
6*2). 

The optimal 9eometry is determined by (37) and the values of (6~, 6*) from the constraints 
(41)-(44) as follows: 

(1.8)16N(l+P~rrd_ 3 6* 
7 \ 7-e / -- 1 (75) 
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162_N2 ( 1 +p~ 2 
7722 ~ S~-e ) V2b2d-6 - 

6* 1 1.82 - 1 

6"1 + 6*2 1.82 
(76) 

1 6 2 N  2 (1 + p,~2 F2r2 d -6 _ 632 _ 1 (77) 
6,1 +6*2 1.82 

d 63 
alma x -- 6~ -- 1 (78) 

L 8~ 
- - 1 ( 7 9 )  

Lmax fi~ 

giving the optimal values 

b* 
d :~ = d . . . .  L* : Lmax, r~- = (1.8 2 - 1 )  + . (80) 

Good proportions will dictate the actual values of b* and r*, but these values must satisfy 
(80). The optimal solution (80) tallies with that given by Johnson in [17] p. 374. 

4 .  D i s c u s s i o n  

As demonstrated in section 3, the method of section 2 for the constrained maximization of 
posynomials is a powerful analytical and numerical tool in a design situation hitherto treated 
mostly by ad hoc methods. 

This method shares with GP the approach and advantages of solving the dual problem 
first, thus gaining information on the relative importance of the various design parameters 
and the various terms in the cost functional, and then determining the optimal design param- 
eters (or their logarithms by solving linear equations). 

The difference between this method and the usual GP method for constrained minimization 
of posynomials is that here the dual problem 10 involves minimaximization, rather than the 
simpler process of maximization involved in the dual problem 2 of GP. There are however 
two cases where the minimaximization problem 10 is greatly simplified: 

Case A. There is a unique solution (60, 6) of (10) and (34). This occurs when the exponent 
matrix 

0{011 0{012 ""0{01N 1 
A =[ o21  o22 ... o2N (81) 

! 

/ ~0Tot 0~0To2 "'0~0ToN 

~ 0{111 0{112 "''~11N 

\~MTM1 O~MTM2 (ZMTMN/ 

of dimension x N is of rank N and ~ Tm= N + 1. 
0 - ra=0 

Case B. For any 60 there is a unique solution 6(60) of (34). This happens if 
M 
F, T,, = N = rank A. 

m=l 

In this case the minimaximization problem 10 reduces to a minimization problem in 6o. 
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